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Cerebrospinal fluid α-synuclein predicts
neurodegeneration and clinical progression
in non-demented elders
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Abstract

Background: Accumulating reports have suggested that α-synuclein is involved in the pathogenesis of Alzheimer’s
disease (AD). As the cerebrospinal fluid (CSF) α-synuclein has been suggested as a potential biomarker of AD, this
study was set out to test whether CSF α-synuclein is associated with other AD biomarkers and could predict
neurodegeneration and clinical progression in non-demented elders.

Methods: The associations between CSF α-synuclein and other AD biomarkers were investigated at baseline in
non-demented Chinese elders. The predictive values of CSF α-synuclein for longitudinal neuroimaging change and
the conversion risk of non-demented elders were assessed using linear mixed effects models and multivariate Cox
proportional hazard models, respectively, in the Alzheimer’s disease Neuroimaging Initiative (ADNI) database.

Results: The CSF α-synuclein levels correlated with AD-specific biomarkers, CSF total tau and phosphorylated tau
levels, in 651 Chinese Han participants (training set). These positive correlations were replicated in the ADNI
database (validation set). Using a longitudinal cohort from ADNI, the CSF α-synuclein concentrations were found to
increase with disease severity. The CSF α-synuclein had high diagnostic accuracy for AD based on the “ATN”
(amyloid, tau, neurodegeneration) system (A + T+ versus A − T − control) (area under the receiver operating
characteristic curve, 0.84). Moreover, CSF α-synuclein predicted longitudinal hippocampus atrophy and conversion
from MCI to AD dementia.

Conclusions: CSF α-synuclein is associated with CSF tau levels and could predict neurodegeneration and clinical
progression in non-demented elders. This finding indicates that CSF α-synuclein is a potentially useful early
biomarker for AD.
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Background
Alzheimer’s disease (AD) is the leading cause of dementia
in the elderly and is clinically characterized by a gradual de-
cline in memory and other cognitive functions. However,
less than half of the patients with dementia have received a
formal diagnosis in Europe and the USA [1]. The patho-
logical change of AD can precede the onset of clinical
symptoms by 20 years. Biomarker research has made it pos-
sible to identify people at the high risk of developing de-
mentia in the general population, even at the preclinical
stage [2, 3]. According to the newly published “ATN”
scheme, various biomarkers can be divided into three bin-
ary components: (i) biomarkers of β-amyloid (Aβ) plaques
or associated pathophysiologic processes labeled as “A”; (ii)
biomarkers of aggregated pathologic tau or associated path-
ophysiologic processes labeled as “T”; and (iii) biomarkers
of neurodegeneration or neuronal injury labeled as “N” [4].
Besides the biomarkers mentioned above, additional novel
biomarkers that reflect other disease mechanisms may pro-
vide insights into the different mechanisms of AD patho-
genesis and assist in identifying novel therapeutic targets in
the future. This was echoed by the 2018 NIA-AA research
framework that “ATN” can be expanded to incorporate
other proteinopathies that are also involved in AD patho-
genesis or frequently co-occur with AD pathologic changes
[5–7]. This provided a multidimensional approach to diag-
nosing dementia and for better clinical stratification of pa-
tients for therapeutic trials [8, 9].
α-Synuclein is best known for its roles in Parkinson’s

disease (PD) and dementia with Lewy bodies (DLB), and
has also been reported to be implicated in AD pathogen-
esis [10]. Patients with AD and concomitant α-synuclein
pathology typically have a more rapid rate of cognitive
decline than those with AD alone [11, 12]. α-Synuclein
is generally considered as a pre-synaptic protein, which
can also be found in human cerebrospinal fluid (CSF)
[13, 14]. Many studies have reported differences in the
CSF α-synuclein levels between PD and control [15–17]
as well as the diagnostic differentiation of different neu-
rodegenerative diseases [18, 19]. However, the potential
role of CSF α-synuclein as a biomarker for the presymp-
tomatic phase of AD remains unclear.
In this study, we explored the associations between

CSF α-synuclein and other AD biomarkers in the non-
demented Chinese elderly. We also tested whether CSF
α-synuclein was altered in patients with AD and with
different pathophysiological profiles of AD based on the
“ATN” classifications, and its associations with other AD
biomarkers, cognitive decline and imaging evidence of
neurodegeneration in the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) database. The value of CSF α-
synuclein as a predictor of disease progression and neu-
rodegeneration at the presymptomatic stage of AD was
also investigated.

Methods
Study participants
Six hundred and fifty-one non-demented participants
were from the Chinese Alzheimer’s Biomarker and Life-
style (CABLE) study. The CABLE is a large-cohort study
mainly focusing on Alzheimer’s risk factors and bio-
markers in Chinese elderly adults. The participants in
the CABLE study were recruited at Qingdao Municipal
Hospital, consisting of cognitively normal (CN) and mild
cognitive impairment (MCI) individuals. All participants
were Han Chinese in origin and aged 50–90 years. The
controls had Mini-Mental State Examination (MMSE)
scores of 24 or higher, with lower scores indicating more
impairment and higher scores less impairment (range,
0–30), and a Clinical Dementia Rating (CDR) score of 0,
where lower scores indicate less impairment and higher
scores more impairment (range, 0–3). The patients with
MCI had MMSE scores of 24 or higher, an objective
memory loss tested by delayed recall of the Wechsler
Memory Scale (WMS) logical memory II (> 1 SD below
the normal mean), a CDR score of 0.5, preserved activ-
ities of daily living, and absence of dementia. The exclu-
sion criteria were: (1) central nervous system infection,
head trauma, epilepsy, multiple sclerosis or other major
neurological disorders; (2) major psychological disorders
(e.g., depression); (3) severe systemic diseases (e.g., ma-
lignant tumors) that may affect CSF or blood levels of
AD biomarkers including Aβ and tau; and (4) family his-
tory of genetic disease. All participants underwent clin-
ical and neuropsychological assessments, biochemical
testing, as well as blood and CSF sample collection.
Demographic information, AD risk factor profile and
medical history were also collected by a comprehensive
questionnaire and an electronic medical record system.
Data were obtained from the ADNI database (adni.

loni.usc.edu), an independent replication cohort. The
ADNI was launched in 2003 as a public-private partner-
ship under the leadership by Michael W. Weiner, MD,
with a primary goal to test whether magnetic resonance
imaging (MRI), positron emission tomography (PET),
biological markers, as well as clinical and neuropsycho-
logical assessment can be combined to measure the pro-
gression of MCI and early AD. For up-to-date
information, see www.adni-info.org.
Our ADNI cohort included all the CN controls, MCI

patients and AD patients with available baseline samples
for CSF α-synuclein. The inclusion/exclusion criteria are
described at http://www.adni-info.org. In our study, we
stratified the MCI group into stable MCI (sMCI) with
no progression to AD dementia during at least 2-year
follow-up, and progressive MCI (pMCI) with progres-
sion to AD dementia during at least 2-year follow-up. As
a result, totally 4 groups were included: CN control,
sMCI group, pMCI group and AD group. As to the
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“ATN” binary (i.e., positive or negative) categories, amyl-
oid positive (A+) and negative (A-) were separated by a
cutoff value of 192 pg/ml for CSF Aβ level; Tau path-
ology positive (T+) and negative (T-) were separated by
a cutoff value of 23 pg/ml for CSF phosphorylated tau
(p-tau) level.
The CABLE study was approved by the Institutional

Ethics Committee of Qingdao Municipal Hospital. Writ-
ten informed consent was obtained from all study partic-
ipants directly or from their guardians. The ADNI study
was approved by the Institutional Review Board at each
of the participating centers, and all participants provided
written informed consent.

CSF/plasma biomarker measurements
CSF was collected by lumbar puncture through the L3/
L4 interspace and gently mixed to avoid gradient effects.
The samples were then centrifuged at 2000 g for 10 min
to remove cells and other insoluble materials, stored in
1-ml aliquots at − 80°C until use for Aβ and tau analysis.
CSF was sampled between 08:00 and 09:00 in the morn-
ing taking into account the possible circadian rhythm
effect.
In the CABLE study, the concentrations of CSF Aβ42,

total tau (t-tau), p-tau and CSF total α-synuclein were
measured separately using an enzyme-linked immuno-
sorbent assay (ELISA) kit (LEGEND MAX™ Human α-
Synuclein ELISA Kit with pre-coated plate, Catalog No:
844101), according to the manufacturer’s instructions.
The samples and standards were measured in duplicate
to generate an average value for the statistical analyses.
In the ADNI database, CSF Aβ42, t-tau and p-tau were

measured at the ADNI biomarker core (University of
Pennsylvania) using the multiplex xMAP Luminex plat-
form (Luminex Corp, Austin, TX, USA) with the INNO-
BIA AlzBio3 kit (Fujirebio, Ghent, Belgium). The CSF
neurofilament light chain (NFL) concentrations were
measured using a commercial ELISA kit (Uman Diag-
nostics). The plasma NFL concentrations were measured
using an NFL kit (NF-light; Uman Diagnostics), trans-
ferred onto the ultrasensitive single-molecule array
platform using a home brew kit (Simoa Homebrew
Assay Development Kit; Quanterix Corporation). The
levels of CSF total α-synuclein concentrations in the
ADNI cohort were measured by the Luminex Micro-
Plex Microspheres (Luminex Corp, Austin, TX), using
the biotinylated goat anti-human α-syn antibody
(R&D systems, Minneapolis, MN) as the detection
antibody. The α-synuclein Luminex assay demon-
strated a low day-to-day and plate-to-plate signal var-
iety. The accuracy of the assay was further
determined by the recovery of spiked α-synuclein pro-
tein, which was close to 93%.

Neuroimaging
Structural MRI was performed only in the ADNI partici-
pants using a Siemens Trio 3.0 T scanner or Vision 1.5 T
scanner (GE, Siemens and Philips). The regional volume
estimates for the 1.5 and 3.0 T MRI images were proc-
essed with the Free-surfer software package version 4.3
and 5.1 image processing frameworks, respectively. The
hippocampus and ventricles were selected as the regions
of interest.

Statistical analyses
The associations between CSF α-synuclein and demo-
graphic factors were analyzed with the Mann-Whitney
test and the Spearman rank correlation test. The associa-
tions of CSF α-synuclein with CSF Aβ42, t-tau, and p-
tau levels were analyzed with the linear regression after
adjustment for age, gender, educational level, diagnosis
and APOE ε4 genotype (with CSF α-synuclein as a pre-
dictor). In the ADNI database, associations between CSF
α-synuclein concentrations and the diagnostic groups
were tested in an analysis of covariance model adjusted
for age, gender, educational level and APOE ε4 genotype.
The effect of different CSF analytes on the risk of con-
version to AD was assessed with the logistic regression
analysis. The receiver-operator curves and the area
under the curves were derived from the predictive prob-
abilities of the logistic regression models. We tested the
associations of CSF α-synuclein concentrations with lon-
gitudinal cognition and brain structure using the linear
mixed-effects models. These models had random inter-
cepts and slopes for time and an unstructured covari-
ance matrix for the random effects and included the
interaction between (continuous) time and CSF α-
synuclein as predictor with adjustment for confounders.
All tests were 2-sided. Statistical significance was set at
P < 0.05. All regression analyses were corrected for age,
gender, educational level, diagnosis, and APOE ε4 geno-
type. The following variables were natural log-
transformed to ensure normality: CSF α-synuclein, p-
tau, t-tau, and Aβ levels, and hippocampus volume. All
statistical analyses were performed using R version 3.4.0
(R Foundation).

Results
Characteristics of participants in the CABLE study
We included 651 non-demented elders from the CABLE
study, consisting of 457 CN controls (238 females,
60.54 ± 10.46 years) and 194 MCI patients (109 females,
63.6 ± 9.72 years) (Table 1). The CN individuals were sig-
nificantly younger and more educated, and had signifi-
cantly lower levels of CSF p-tau and t-tau, compared to
the MCI participants.
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CSF α-synuclein and established AD biomarkers in the
CABLE study
In the CABLE study, we examined the concentrations of
CSF α-synuclein and other established AD biomarkers
(CSF Aβ, p-tau and t-tau) and tested their relationships
(Table 2). We found that the level of CSF α-synuclein
was positively associated with the CSF t-tau (β = 0.56,
P < 0.001) and p-tau (β = 0.35, P < 0.001) among the non-
demented participants. However, there was no associ-
ation between CSF α-synuclein and CSF Aβ level at
baseline. In addition, the same associations were found
in the CN group and the MCI group (Table 2).

Characteristics of participants in ADNI
Three hundred and eighty-two subjects from the ADNI
database were included (Table 3). This cohort consisted
of 109 CN controls (54 females, 75.63 ± 5.22 years), 117
sMCI patients (37 females, 74.34 ± 7.60 years), 66 pMCI
patients (25 females, 74.21 ± 7.58 years) and 90 AD pa-
tients (39 females, 74.89 ± 7.72 years). According to the
new “ATN” scheme, 258 A+ (220 A + T+) patients and
124 A- (96 A-T-) controls were included. As expected,
the AD group had the highest frequency of the APOE ε4
allele (69.23%) and the CN group had the lowest fre-
quency (23.85%). There was no significant difference in
the educational level (P = 0.16) or age (P = 0.53) among
these four groups. Furthermore, AD patients had lower

MMSE scores compared with the MCI patients and CN
controls (P < 0.01).

CSF α-synuclein and established AD biomarkers in ADNI
In the ADNI database, we found that the high CSF α-
synuclein levels were associated with the high CSF t-tau
(β = 0.27, P < 0.001) and p-tau (β = 0.36, P < 0.001) in the
whole cohort. However, there was no association be-
tween CSF α-synuclein and CSF Aβ level at baseline.
The same results were obtained in the MCI group (CSF
t-tau: β = 0.29, P < 0.001, CSF p-tau: β = 0.33, P < 0.001)
and CN controls (CSF t-tau: β = 0.2, P < 0.001, CSF p-
tau: β = 0.32, P < 0.001). In addition, the CSF α-synuclein
concentration was associated with CSF NFL concentra-
tion in non-demented elders (β = 0.12, P < 0.001). How-
ever, there was no association between CSF α-synuclein
and plasma NFL (Table 4, Fig. S1).

CSF α-synuclein in different diagnostic groups in ADNI
The level of CSF α-synuclein showed a trend of increase
with the progression of disease stage. The CSF α-
synuclein concentration was significantly higher in the
AD and pMCI groups than in the CN controls (P <
0.0001 and P < 0.001, respectively) and the sMCI group
(P = 0.02 and P = 0.04, respectively) (Fig. 1a). In addition,
the A+ AD group had higher CSF α-synuclein levels
than the A- controls (P < 0.001), A+ controls (P < 0.001),
and A- MCI group (P < 0.001) (Fig. 1b). The A+ MCI

Table 1 Demographics of the study population in CABLE a

CN (n = 457) MCI (n = 194) P value

AGE, mean (SD), years 60.93 (10.55) 65.44 (10.01) < 0.001

Female, n (%) 269 (58.9) 109 (56.2) 0.59

APOE ε4 genotype carriers, n (%) 69 (15.1) 35 (18.0) 0.41

Education, mean (SD), years 10.38 (6.12) 8.56 (4.23) < 0.001

CSF α-synuclein, mean (SD), ng/l 1466.73 (813.99) 1501.19 (914.13) 0.61

CSF p-tau, mean (SD), ng/l 38.11 (9.69) 40.04 (12.42) 0.03

CSF t-tau, mean (SD), ng/l 173.3 (77.96) 191.02 (122.57) 0.03

CSF Aβ42, mean (SD), ng/l 160.01 (91.51) 162.10 (105.53) 0.81

Aβ β-amyloid, CN Cognitively normal, CSF Cerebrospinal fluid, MCI Mild cognitive impairment, MMSE Mini-Mental State Examination, p-tau Phosphorylated tau, t-
tau Total tau.
aP values from the Kruskal-Wallis test or Fisher exact test

Table 2 Correlations between CSF α-synuclein and other biochemical markers in CABLE a

All participants CN MCI

β coefficient P value β coefficient P value β coefficient P value

CSF t-tau 0.56 < 0.001 0.38 < 0.001 0.67 < 0.001

CSF p-tau 0.35 < 0.001 0.27 < 0.001 0.40 < 0.001

CSF Aβ42 −0.02 0.97 −0.01 0.82 −0.07 0.69

Aβ β-amyloid, CABLE Chinese Alzheimer’s Biomarker and Lifestyle, CN Cognitively normal, CSF Cerebrospinal fluid, MCI Mild cognitive impairment, p-tau
Phosphorylated tau, t-tau Total tau.
aData are β coefficients (with P values) from linear regression models for correlations between CSF α-synuclein and other biomarkers, adjusted for age, gender,
educational level and APOE ε4 genotype. Models were tested in the whole cohort and in individual diagnostic groups
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had higher CSF α-synuclein levels than the A- controls
(P < 0.01), A+ controls (P < 0.01), and the A- MCI group
(P = 0.02). The CSF α-synuclein level was also signifi-
cantly different between the A + T+ group and the A-T-
group (P < 0.0001) (Fig. 1c).
We generated receiver-operating curves based on

the logistic regression models adjusted for age at
baseline, gender, educational level and APOE ε4
genotype to assess the predictive value of CSF α-
synuclein alone and in combination with other
established AD biomarkers for the risk of conversion
to AD. The area under the curve (AUC) of the base-
line model containing CSF α-synuclein, age at base-
line, gender, educational level and APOE ε4 genotype
was 0.76 in predicting the onset of AD among the
CN controls, and the AUC was further increased by
the inclusion of CSF tau/Aβ ratio (AUC = 0.88) (Fig.
S2). As expected, the baseline model showed a simi-
lar predicting value for the onset of pMCI among
the CN controls (Fig. S3). In the A- group, this

baseline model showed a good predictive value for
the risk of conversion to A+ status (AUC = 0.77),
and inclusion of CSF t-tau (AUC = 0.88) and p-tau
(AUC = 0.92) further enhanced this predictive value
(Fig. S4). Furthermore, the baseline model performed
best when the participants were grouped by Aβ
deposition and pathology (AUC = 0.84). We also de-
tected that CSF α-synuclein added value for diagno-
sis prediction (Fig. S5).

CSF α-synuclein, longitudinal neuroimaging change and
progression in ADNI
Next, the linear mixed-effects models were utilized to
test the associations between baseline CSF α-synuclein
concentration and subsequent disease progression, after
adjustment for age, gender, educational level, diagnosis,
and APOE ε4 genotype. The baseline CSF α-synuclein
concentration was found to be significantly associated
with the hippocampal volume (β = − 0.008, P = 0.001 lon-
gitudinally) (Table 4, Fig. 2 (left)).

Table 3 Demographics of the study population in ADNI

CN (n = 109) sMCI (n = 117) pMCI (n = 66) AD (n = 90)

Age, mean (SD), years 75.63 (5.22) 74.34 (7.60) 74.21 (7.58) 74.89 (7.72)

Female, n (%) 54 (49.54) 37 (31.62) 25 (36.76) 39 (44.32)

APOE ε4 genotype carriers, n (%) 26 (23.85) 55 (47.00) 42 (61.76) 63 (69.23)

CSF α-synuclein, mean (SD), ng/L 0.46 (0.17) 0.54 (0.22) 0.56 (0.20) 0.61 (0.24)

MMSE score, mean (SD) 29.07 (1.05) 27.15 (1.64) 26.58 (1.77) 23.39 (1.80)

CSF Aβ42, mean (SD), ng/L 208.70 (52.36) 174.69 (55.28) 148.75 (41.52) 143.99 (38.31)

CSF t-tau, mean (SD), ng/L 69.08 (29.85) 97.31 (64.77) 112.00 (41.52) 122.83 (57.09)

CSF p-tau, mean (SD), ng/L 25.04 (13.93) 32.76 (18.31) 39.50 (17.18) 41.48 (19.73)

Hippocampus volume, mm3 6648.16 (766.59) 5964.07 (986.76) 5522.46 (1044.15) 5217.39 (1043.40)

Abbreviations: Aβ β-amyloid, AD Alzheimer disease dementia, CN Cognitively normal, CSF Cerebrospinal fluid, sMCI Stable mild cognitive impairment, pMCI
Progressive mild cognitive impairment, MMSE Mini-Mental State Examination, p-tau Phosphorylated tau, t-tau Total tau

Table 4 Modelling the association of CSF biomarkers on AD biomarkers and clinical outcomes in ADNIa

All Participants MCI CN

Cross-sectional (MR) β coefficient P value β coefficient P value β coefficient P value

CSF t-tau 0.27 < 0.001 0.29 < 0.001 0.20 < 0.001

CSF p-tau 0.36 < 0.001 0.33 < 0.001 0.32 < 0.001

CSF Aβ42 −0.03 0.33 −0.04 0.32 0.006 0.86

CSF NFL 0.12 < 0.001 0.11 0.04 0.03 0.45

Plasma NFL 0.04 0.27 0.02 0.73 −0.04 0.53

Longitudinal (MELM)

Hippocampus −0.008 0.001 −0.007 0.04 −0.003 0.17

Ventricles 0.006 0.13 0.005 0.36 0.003 0.43

Cox (Hazard ratio) Statistic P value

MCI-to-AD dementia conversion 1.53 (1.15–2.0) 0.004

Abbreviations: CN Cognitively normal, CSF Cerebrospinal fluid, MCI Mild cognitive impairment, p-tau Phosphorylated tau, t-tau Total tau, Cox Cox proportional
hazards model, MELM Mixed effects linear model, MR Multiple regression
aAll models were adjusted for age, gender, educational level, APOE ε4 genotype and intracranial volume (for MRI only). Models were tested in the whole cohort
and in individual diagnostic groups
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Figure 2 (right) presents the results of Kaplan-Meier
analysis. The cox proportional hazards model was
developed to estimate the predictive value of CSF α-
synuclein for the conversion risk from MCI to inci-
dence of AD dementia, after controlling for baseline
age, gender and years of education. MCI individuals
with high CSF α-synuclein levels would satisfy the
diagnostic criteria for AD at a comparatively earlier

interval (hazard ratio 2.79, 95% CI 1.14–6.9, P = 0.03)
(Table 4).

Discussion
In this study, we found that the CSF α-synuclein con-
centration (1) was associated with CSF t-tau and p-tau
levels among the non-demented elderly adults, (2) was
elevated in the AD dementia group and the Aβ/tau-

Fig. 1 Scatter plots of cerebrospinal fluid α-synuclein concentrations in the diagnostic groups. The colors of the scatterplots are grouped by
different diagnostic groups. The three horizontal black lines in each boxplot indicate the median and interquartile range. The whiskers extend to
the minimum and maximum CSF α-synuclein data points. a CSF α-synuclein concentration in the diagnostic groups. b CSF α-synuclein
concentration in the diagnostic groups stratified by Aβ pathology. c CSF α-synuclein concentration in the AD pathophysiology (tau and amyloid-
β) positive and negative subgroups. A-, Aβ negative; A+, Aβ positive; T-, tau negative; T+, tau positive

Fig. 2 Associations between CSF α-synuclein and longitudinal neuroimaging change in ADNI. Data from linear mixed-effects models (left) and
cox proportional hazards models (right) were adjusted for age, gender, educational level and APOE ε4 genotype. Hippocampal volume on the y
axis was log-transformed to ensure normality. Time (years) on the x axis indicated follow-up years, in which “0” indicating the baseline. All
participants were classified into High and Low groups according to their baseline CSF α-synuclein concentration (High: greater than median; Low:
less than median)
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positive group compared with the control group, and (3)
could predict hippocampal atrophy and the conversion
from MCI to AD dementia. Taken together, these find-
ings suggest that CSF α-synuclein is a very early and
potentially presymptomatic biomarker for AD. This bio-
marker may be helpful for AD diagnosis and prediction
of disease progression and staging of AD even in the
preclinical stage.
“Pure” AD is characterized by the presence of both dif-

fused neuritic plaques and intracellular neurofibrillary tan-
gles, with a lack of abnormal α-synuclein inclusions or
neuritis. However, more than 50% of AD patients exhibit
excessive brain accumulation of α-synuclein-positive Lewy
bodies, particularly in the amygdala [10, 20]. The presence
of α-synuclein seems not to be innocuous, as these pa-
tients demonstrate an accelerated cognitive decline than
subjects with AD alone [12, 21]. Previous studies have in-
dicated that α-synuclein can be secreted into the sur-
rounding media in the brain and then to the CSF [22, 23].
Therefore, the CSF could be used to investigate the mech-
anisms of α-synuclein metabolism in the brain.
Consistent with most studies, our study showed that

CSF α-synuclein was higher in the AD group compared
with the CN controls and MCI group. A possible hy-
pothesis is that the higher level of α-synuclein could in-
duce a decrease in some proteins in synaptic vesicle and
alterations of the protein composition of synaptic vesi-
cles, thus causing neuronal damage in AD, which in turn
increases the release of α-synuclein from damaged cells
into the CSF [24, 25]. As the CSF α-synuclein levels are
lower in synucleinopathies compared to control, but ap-
pear higher in AD/MCI than control, the α-synuclein
may serve as a biomarker for differential dementia diag-
nosis. In this study, logistic regression analysis was used
to assess the effect of CSF analytes on the risk of pro-
gression to AD. The AUC (which reflects the predictive
probabilities of the logistic regression models) of the
model including CSF α-synuclein, age at baseline, gen-
der, educational level and APOE ε4 genotype had good
performance in predicting progression from CN to
pMCI or AD. Recently, the NIA-AA committee has rec-
ommended a different definition of AD by pathophysi-
ology, independent of the clinical symptoms. They
proposed that as long as biomarker evidence of Aβ and
tau pathology was present simultaneously, the term
“Alzheimer’s disease” would be applied. Here the CSF α-
synuclein model had high diagnostic accuracy for pa-
tients with the diagnosis of AD based on the “ATN” sys-
tem (A + T+) vs controls (A-T-) (AUC = 0.84, which was
comparable to other established CSF biomarkers).
Many lines of evidence have suggested that the patho-

logical α-synuclein, Aβ and tau have synergistic adverse
effects to promote the aggregation of each other, thereby
amplifying the neuronal damage [24, 26–31]. Notably, α-

synuclein inclusions are commonly observed in patients
with familial Down’s syndrome, where Aβ peptides are
highly expressed. In both diseases, α-synuclein affects
the biological pathways and promotes the formation of
Aβ aggregates. α-Synuclein has also been proposed to be
implicated in synaptic vesicle formation, axonal trans-
port as well as dopamine synthesis and metabolism [32].
In normal conditions, the synaptic membrane is inte-
grated and the α-synuclein is completely released into
the cytosol. However, in the event of neuronal damage
and synaptic membrane defect, both aggregated Aβ and
α-synuclein might attach to synaptic membrane and ac-
cumulate in lipid rafts. The synaptic membrane-bound
α-synuclein could not only induce cytosolic α-synuclein
to aggregate as intracellular Lewy bodies but also inter-
act with the membrane-associated Aβ40 and Aβ42 pep-
tides [33]. This may explain the low level of CSF α-
synuclein in individuals with normal cognitive function
to a certain extent. Moreover, an in vitro experiment has
demonstrated that the interaction with Aβ1–42 is suffi-
cient to induce the intracellular accumulation of α-
synuclein, whereas interaction with Aβ1–40 is not [34]. In
our study, however, we did not find any association be-
tween CSF α-synuclein and CSF Aβ levels at baseline.
The reason may be that this mutual effect occurs in the
initial stages of the mixed pathology, preceding the pres-
ence of intracellular α-synuclein in surrounding media
and eventually in the CSF by years or decades. We only
studied the CSF total α-synuclein level rather than the
oligomeric or phosphorylated forms. Future studies fo-
cusing on the oligomeric or phosphorylated forms of α-
synuclein may provide additional information.
Moreover, α-synuclein has also being observed in pro-

gressive supranuclear palsy [35] and frontotemporal de-
mentia [36]. Many studies have proposed that α-
synuclein and tau interact to promote the fibrillation
and toxicity of each other [26]. However, unlike α-
synuclein that could spontaneously polymerize into amy-
loidogenic fibrils, tau requires cofactors such as glycos-
aminoglycans or nucleic acids to polymerize [37]. The α-
synuclein polymers act as amyloidogenic “seeds” or as
amyloidogenic chaperones that induce the formation of
tau fibrillary inclusions even in the absence of α-
synuclein coexpression [26, 27, 38]. Besides, Tau pro-
motes α-synuclein to polymerize into fibrils. Low con-
centrations of α-synuclein do not fibrillize without tau,
however, in the presence of tau, most α-synuclein as-
sembles into fibrils. Much attention has been paid to the
relationship between CSF α-synuclein and tau. Consist-
ent with most studies [24, 29], our study found positive
associations of CSF α-synuclein with CSF t-tau and p-
tau levels in the CABLE study. We noted that the mean
values for CSF α-synuclein and CSF Aβ levels between
controls in the 2 Chinese cohorts using similar assays
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were different. This could partly be explained by the dif-
ferences in pre-analytical protocols, analytical proce-
dures, assay quality and the absolute levels between
assay formats [39]. In addition, the CSF α-synuclein also
correlated with the CSF NFL in the whole cohort, but
not in the CN group, suggesting that they were con-
founded by diagnosis. This finding probably reflects that
several different pathological conditions (e.g., degener-
ation of different types of axons) may drive the different
biomarker responses. We also tested the association be-
tween CSF α-synuclein and plasma NFL concentration,
but did not find any significant association. More studies
with larger sample sizes are needed to clarify whether α-
synuclein and NFL reflect the same neurodegeneration
pattern.
Importantly, we found that the CSF α-synuclein

levels might correlate with AD severity and progres-
sion, which was consistent with a recent study indi-
cating that increased α-synuclein displayed a stronger
association with cognitive impairment than soluble
Aβ and tau levels [40]. It has been widely recognized
that α-synuclein is a synaptic marker. α-Synuclein is
highly expressed in the pre-synaptic terminals [41, 42]
and plays a role in the regulation of neurotransmitter
release, synaptic function and plasticity. It could trig-
ger synaptoxicity not only by directly damaging the
synaptic membrane, but also by damaging the mito-
chondria, lysosomes, or microtubules, leading to den-
dritic and spine alterations, axonal dystrophy, and
eventually neuronal loss [43]. Along with the synaptic
damage, α-synuclein is released into the CSF. There-
fore, it is reasonable to assume that the CSF α-
synuclein level correlates with cognitive decline in
AD, since synaptic damage is supposed to be a strong
predictor of cognitive decline [44].

Conclusions
CSF α-synuclein was associated with CSF t-tau and p-
tau levels among the non-demented elderly adults. In
the ADNI database, CSF α-synuclein concentrations
were increased with the severity of the disease. CSF
α-synuclein predicted longitudinal hippocampus atro-
phy and conversion from MCI to AD dementia. The
current findings suggest CSF α-synuclein as a very
early and potentially presymptomatic biomarker for
AD, a prognostic marker in the clinic, and an out-
come measure in clinical trials.
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